本文共 3872 字,大约阅读时间需要 12 分钟。
为了简化 POSIX 线程 (pthread) 的使用,我们可以自定义一个线程封装类 MyThread
。该类通过提供线程的启动和控制功能,使得线程的创建更加面向对象和便捷。
class MyThread { public: MyThread(pthread_t tid, const std::string &name, func_t func) : _tid(tid), _name(name), _isrunning(false), _fun(func) { std::cout << "My tid is " << _tid << " name is " << _name << std::endl; } ~MyThread() {} // 孤立 static void *ThreadRoutine(void *args) { MyThread *th = static_cast(args); th->_fun(); return nullptr; } void Start() { int retValue = pthread_create(&_tid, nullptr, ThreadRoutine, this); if (retValue != 0) { std::cout << "Create thread failed! Error code: " << retValue << std::endl; return; } else { _isrunning = true; std::cout << "Thread started successfully." << std::endl; } } void Join() { if (!_isrunning) return; int retValue = pthread_join(_tid, nullptr); if (retValue == 0) { _isrunning = false; } else { std::cout << "Join failed! Error code: " << retValue << std::endl; } } private: pthread_t _tid; std::string _name; bool _isrunning; func_t _fun;};
#include "thread.hpp"void Print() { std::cout << "Step in" << std::endl; while (true) { std::cout << "I am running" << std::endl; sleep(1); }}int cnt = 0;std::string GetName() { std::string name = "thread : " + std::to_string(cnt); cnt++; return name;}int main() { pthread_t tid = 0; MyThread th(tid, GetName(), Print); th.Start(); th.Join(); return 0;}
ThreadRoutine
必须是静态的,因为它作为线程入口点,不能持有 MyThread
实例。Start
方法将 this
作为参数传递给 pthread_create
,允许线程实例在静态成员函数中访问自身的成员。Join
方法等待线程结束,并正确释放资源。多个线程同时访问公共资源(临界区域)可能导致竞态条件(Race Condition),导致数据一致性问题。解决方法是使用互斥锁(Mutex)。
#include#include #include int ticket = 100;void *route(void *arg) { char *id = (char *)arg; while (1) { pthread_mutex_lock(nullptr); if (ticket > 0) { usleep(1000); printf("%s sells ticket %d\n", id, ticket); ticket--; } else { pthread_mutex_unlock(nullptr); break; } } return nullptr;}int main() { pthread_t t1, t2, t3, t4; pthread_create(&t1, nullptr, route, (void *)"thread 1"); pthread_create(&t2, nullptr, route, (void *)"thread 2"); pthread_create(&t3, nullptr, route, (void *)"thread 3"); pthread_create(&t4, nullptr, route, (void *)"thread 4"); pthread_join(t1, nullptr); pthread_join(t2, nullptr); pthread_join(t3, nullptr); pthread_join(t4, nullptr); return 0;}
ticket
,防止票被多次购买。pthread_create
创建四个售票线程。pthread_join
等待所有线程完成操作。void *route(void *arg) { char *id = static_cast(arg); while (1) { pthread_mutex_lock(&mutex); if (ticket > 0) { sleep(1); // 模拟购票耗时 printf("%s sells ticket %d\n", id, ticket); ticket--; } pthread_mutex_unlock(&mutex); if (ticket <= 0) { break; } } return nullptr;}
###Linux下的互斥锁接口
在 Linux 中,互斥锁接口包括以下函数:
pthread_mutex_init(pthread_mutex_t mutex, const pthread_mutexattr_t *)
:初始化互斥锁。pthread_mutex_destroy(pthread_mutex_t mutex)
:销毁互斥锁。pthread_mutex_lock(pthread_mutex_t mutex)
:锁定互斥锁。pthread_mutex_trylock(pthread_mutex_t mutex)
:非阻塞锁定互斥锁。pthread_mutex_unlock(pthread_mutex_t mutex)
:解锁互斥锁。pthread_mutexattr_init(pthread_mutexattr_t *attr)
:初始化互斥锁属性。pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
:设置互斥锁属性类型。通过使用互斥锁,可以有效地保护共享资源,防止竞态条件。掌握这些知识对于开发安全的多线程程序至关重要,确保程序稳定运行。
转载地址:http://kpwfk.baihongyu.com/